一、知識(shí)結(jié)構(gòu)
本小節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例人手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明.然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的例子.
二、重點(diǎn)難點(diǎn)分析
這一節(jié)的重點(diǎn)是集合的基本概念和表示方法,難點(diǎn)是運(yùn)用集合的三種常用表示方法正確表示一些簡(jiǎn)單的集合.這一節(jié)的特點(diǎn)是概念多、符號(hào)多,正確理解概念和準(zhǔn)確使用符號(hào)是學(xué)好本節(jié)的關(guān)鍵.為此,在教學(xué)時(shí)可以配備一些需要辨析概念、判斷符號(hào)表示正誤的題目,以幫助學(xué)生提高判斷能力,加深理解集合的概念和表示方法.
1.關(guān)于牽頭圖和引言分析
章頭圖是一組跳傘隊(duì)員編成的圖案,引言給出了一個(gè)實(shí)際問(wèn)題,其目的都是為了引出本章的內(nèi)容無(wú)論是分析還是解決這個(gè)實(shí)際間題,必須用到集合和邏輯的知識(shí),也就是把它數(shù)學(xué)化.一方面提高用數(shù)學(xué)的意識(shí),一方面說(shuō)明集合和簡(jiǎn)易邏輯知識(shí)是高中數(shù)學(xué)重要的基礎(chǔ).
2.關(guān)于集合的概念分析
點(diǎn)、線、面等概念都是幾何中原始的、不加定義的概念,集合則是集合論中原始的、不加定義的概念.
初中代數(shù)中曾經(jīng)了解“正數(shù)的集合”、“不等式解的集合”;初中幾何中也知道中垂線是“到兩定點(diǎn)距離相等的點(diǎn)的集合”等等.在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí).教科書(shū)給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集.”這句話,只是對(duì)集合概念的描述性說(shuō)明.
我們可以舉出很多生活中的實(shí)際例子來(lái)進(jìn)一步說(shuō)明這個(gè)概念,從而闡明集合概念如同其他數(shù)學(xué)概念一樣,不是人們憑空想象出來(lái)的,而是來(lái)自現(xiàn)實(shí)世界.
3.關(guān)于自然數(shù)集的分析
教科書(shū)中給出的常用數(shù)集的記法,是新的國(guó)家標(biāo)準(zhǔn),與原教科書(shū)不盡相同,應(yīng)該注意.
集合中的元素是不分順序的.集合和點(diǎn)的坐標(biāo)是不同的概念,在平面直角坐標(biāo)系中,點(diǎn)(l,0)和點(diǎn)(0,l)表示不同的兩個(gè)點(diǎn),而集合{1,0}和{0,1}表示同一個(gè)集合.
5.要辯證理解集合和元素這兩個(gè)概念
(1)集合和元素是兩個(gè)不同的概念,符號(hào)和是表示元素和集合之間關(guān)系的,不能用來(lái)表示集合之間的關(guān)系.例如
(3)集合具有兩方面的意義,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必須符合條件.
6.表示集合的方法所依據(jù)的國(guó)家標(biāo)準(zhǔn)
本小節(jié)列舉法與描述法所使用的集合的記法,依據(jù)的是新國(guó)家標(biāo)準(zhǔn)如下的規(guī)定.