6.3實(shí)踐與探索
廣西大新縣雷平中學(xué) 何勇新
第一課時
教學(xué)目的
讓學(xué)生通過獨(dú)立思考,積極探索,從而發(fā)現(xiàn);初步體會數(shù)形結(jié)合思想的作用。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):通過分析圖形問題中的數(shù)量關(guān)系,建立方程解決問題。
2.難點(diǎn):找出“等量關(guān)系”列出方程。
教學(xué)過程
一、復(fù)習(xí)提問
1.列一元一次方程解應(yīng)用題的步驟是什么?
2.長方形的周長公式、面積公式。
二、新授
問題3.用一根長60厘米的鐵絲圍成一個長方形。
(1)使長方形的寬是長的專,求這個長方形的長和寬。
(2)使長方形的寬比長少4厘米,求這個長方形的面積。
(3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎?
不是每道應(yīng)用題都是直接設(shè)元,要認(rèn)真分析題意,找出能表示整個題意的等量關(guān)系,再根據(jù)這個等量關(guān)系,確定如何設(shè)未知數(shù)。
(3)當(dāng)長方形的長為18厘米,寬為12厘米時
長方形的面積=18×12=216(平方厘米)
當(dāng)長方形的長為17厘米,寬為13厘米時
長方形的面積=221(平方厘米)
∴(1)中的長方形面積比(2)中的長方形面積小。
問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發(fā)現(xiàn)了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積最大呢?并加以驗(yàn)證。
實(shí)際上,如果兩個正數(shù)的和不變,當(dāng)這兩個數(shù)相等時,它們的積最大,通過以后的學(xué)習(xí),我們就會知道其中的道理。
三、鞏固練習(xí)
教科書第14頁練習(xí)1、2。
第l題等量關(guān)系是:圓柱的體積=長方體的體積。
第2題等量關(guān)系是:玻璃杯中的水的體積十瓶內(nèi)剩下的水的體積=原來整瓶水的體積。
四、小結(jié)
運(yùn)用方程解決問題的關(guān)鍵是抓住等量關(guān)系,有些等量關(guān)系是隱藏的,不明顯,要聯(lián)系實(shí)際,積極探索,找出等量關(guān)系。
五、作業(yè)
教科書第16頁,習(xí)題6.3.1第1、2、3。
第二課時
教學(xué)目的
通過分析儲蓄中的數(shù)量關(guān)系、商品利潤等有關(guān)知識,經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,進(jìn)一步體會方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):探索這些實(shí)際問題中的等量關(guān)系,由此等量關(guān)系列出方程。
2.難點(diǎn):找出能表示整個題意的等量關(guān)系。
教學(xué)過程
一、復(fù)習(xí)
1.儲蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤等有關(guān)知識。
利潤=售價-成本 ; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計(jì)算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設(shè)小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據(jù)等量關(guān)系,得 2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實(shí)際得到的利息是多少?扣除利息的20%,實(shí)際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店將某種服裝按成本價提高40%后標(biāo)價,又以8折 (即按標(biāo)價的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標(biāo)價的80%(即售價)-成本=15
若設(shè)這種服裝每件的成本是x元,那么
每件服裝的標(biāo)價為:(1+40%)x
每件服裝的實(shí)際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關(guān)系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服裝的成本是125元。
三、鞏固練習(xí)
教科書第15頁,練習(xí)1、2。
四、小結(jié)
當(dāng)運(yùn)用方程解決實(shí)際問題時,首先要弄清題意,從實(shí)際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗(yàn)解的合理性。應(yīng)用一元一次方程解決實(shí)際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。
五、作業(yè)
教科書第16頁,習(xí)題6.3.1,第4、5題。
三課時
教學(xué)目的
借助“線段圖”分析復(fù)雜的行程問題中的數(shù)量關(guān)系,從而建立方程解決實(shí)際問題,發(fā)展分析問題,解決問題的能力,進(jìn)一步體會方程模型的作用。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):列一元一次方程解決有關(guān)行程問題。
2.難點(diǎn):間接設(shè)未知數(shù)。
教學(xué)過程
一、復(fù)習(xí)
1.列一元一次方程解應(yīng)用題的一般步驟和方法是什么?
2.行程問題中的基本數(shù)量關(guān)系是什么?
路程=速度×?xí)r間 速度=路程 / 時間
二、新授
例1.小張和父親預(yù)定搭乘家門口的公共汽車趕往火車站,去家鄉(xiāng)看望爺爺,在行駛了三分之一路程后,估計(jì)繼續(xù)乘公共汽車將會在火車開車后半小時到達(dá)火車站,隨即下車改乘出租車,車速提高了一倍,結(jié)果趕在火車開車前15分鐘到達(dá)火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠(yuǎn)?
畫“線段圖”分析, 若直接設(shè)元,設(shè)小張家到火車站的路程為x千米。
1.坐公共汽車行了多少路程?乘的士行了多少路程?
2.乘公共汽車用了多少時間,乘出租車用了多少時間?
3.如果都乘公共汽車到火車站要多少時間?
4,等量關(guān)系是什么?
如果設(shè)乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。
可設(shè)公共汽車從小張家到火車站要x小時。
設(shè)未知數(shù)的方法不同,所列方程的復(fù)雜程度一般也不同,因此在設(shè)未知數(shù)時要有所選擇。
三、鞏固練習(xí)
教科書第17頁練習(xí)1、2。
四、小結(jié)
有關(guān)行程問題的應(yīng)用題常見的一個數(shù)量關(guān)系:路程=速度×?xí)r間,以及由此導(dǎo)出的其他關(guān)系。如何選擇設(shè)未知數(shù)使方程較為簡單呢?關(guān)鍵是找出較簡捷地反映題目全部含義的等量關(guān)系,根據(jù)這個等量關(guān)系確定怎樣設(shè)未知數(shù)。
四、作業(yè)
教科書習(xí)題6.3.2,第1至5題。
第四課時
教學(xué)目的
1.理解用一元一次方程解工程問題的本質(zhì)規(guī)律;通過對“工程問題”的分析進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法解決實(shí)際問題的能力。
2.理解和掌握基本的數(shù)學(xué)知識、技能、數(shù)學(xué)思想方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗(yàn),提高解決問題的能力。
重點(diǎn)、難點(diǎn)
重點(diǎn):工程中的工作量、工作的效率和工作時間的關(guān)系。
難點(diǎn):把全部工作量看作“1”。
教學(xué)過程
一、復(fù)習(xí)提問
1.一件工作,如果甲單獨(dú)做2小時完成,那么甲獨(dú)做I小時完成全
部工作量的多少?
2.一件工作,如果甲單獨(dú)做。小時完成,那么甲獨(dú)做1小時,完成
全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關(guān)系?
二、新授
閱讀教科書第18頁中的問題6。
分析:1.這是一個關(guān)于工程問題的實(shí)際問題,在這個問題中,已經(jīng)知道了什么? 已知:制作一塊廣告牌,師傅單獨(dú)完成需4天,徒弟單獨(dú)做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關(guān)系是什么?
[等量關(guān)系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
兩人的工效已知,因此要先求他們各自所做的天數(shù),因此,設(shè)師傅做了x天,則徒弟做(x+1)天,根據(jù)等量關(guān)系列方程。 解方程得 x=2
師傅完成的工作量為= ,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
三、鞏固練習(xí)
一件工作,甲獨(dú)做需30小時完成,由甲、乙合做需24小時完成,現(xiàn)
由甲獨(dú)做10小時;
請你提出問題,并加以解答。
例如 (1)剩下的乙獨(dú)做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨(dú)做5小時,然后甲、乙合做,還需多少小時完成?
四、小結(jié)
1.本節(jié)課主要分析了工作問題中工作量、工作效率和工作時間之
間的關(guān)系,即 工作量=工作效率×工作時間
工作效率= 工作時間=
2.解題時要全面審題,尋找全部工作,單獨(dú)完成工作量和合作完成工作量的一個等量關(guān)系列方程。
五、作業(yè)
教科書習(xí)題6.3.3第1、2題。